4.6 Article

Cell Adhesion Molecules Are Mediated by Photobiomodulation at 660 nm in Diabetic Wounded Fibroblast Cells

Journal

CELLS
Volume 7, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/cells7040030

Keywords

diabetes; extracellular matrix; fibroblasts; laser; photobiomodulation; wound healing

Categories

Funding

  1. South African Research Chairs Initiative of the Department of Science and Technology
  2. National Research Foundation (NRF) of South Africa [98337]
  3. University of Johannesburg (URC), African Laser Centre (ALC)
  4. Council for Scientific and Industrial Research (CSIR)-National Laser Centre (NLC) Laser Rental Pool Program

Ask authors/readers for more resources

Diabetes affects extracellular matrix (ECM) metabolism, contributing to delayed wound healing and lower limb amputation. Application of light (photobiomodulation, PBM) has been shown to improve wound healing. This study aimed to evaluate the influence of PBM on cell adhesion molecules (CAMs) in diabetic wound healing. Isolated human skin fibroblasts were grouped into a diabetic wounded model. A diode laser at 660 nm with a fluence of 5 J/cm(2) was used for irradiation and cells were analysed 48 h post-irradiation. Controls consisted of sham-irradiated (0 J/cm(2)) cells. Real-time reverse transcription (RT) quantitative polymerase chain reaction (qPCR) was used to determine the expression of CAM-related genes. Ten genes were up-regulated in diabetic wounded cells, while 25 genes were down-regulated. Genes were related to transmembrane molecules, cell-cell adhesion, and cell-matrix adhesion, and also included genes related to other CAM molecules. PBM at 660 nm modulated gene expression of various CAMs contributing to the increased healing seen in clinical practice. There is a need for new therapies to improve diabetic wound healing. The application of PBM alongside other clinical therapies may be very beneficial in treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available