4.7 Article

Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade

Journal

JOURNAL FOR IMMUNOTHERAPY OF CANCER
Volume 6, Issue -, Pages -

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1186/s40425-018-0356-4

Keywords

TGF-beta receptor I; Antitumor efficacy; Checkpoint inhibitors; Galunisertib

Ask authors/readers for more resources

Background: TGF beta signaling plays a pleotropic role in tumor biology, promoting tumor proliferation, invasion and metastasis, and escape from immune surveillance. Inhibiting TGF beta's immune suppressive effects has become of particular interest as a way to increase the benefit of cancer immunotherapy. Here we utilized preclinical models to explore the impact of the clinical stage TGF beta pathway inhibitor, galunisertib, on anti-tumor immunity at clinically relevant doses. Results: In vitro treatment with galunisertib reversed TGF beta and regulatory T cell mediated suppression of human T cell proliferation. In vivo treatment of mice with established 4T1-LP tumors resulted in strong dose-dependent antitumor activity with close to 100% inhibition of tumor growth and complete regressions upon cessation of treatment in 50% of animals. This effect was CD8+ T cell dependent, and led to increased T cell numbers in treated tumors. Mice with durable regressions rejected tumor rechallenge, demonstrating the establishment of immunological memory. Consequently, mice that rejected immunogenic 4T1-LP tumors were able to resist rechallenge with poorly immunogenic 4 T1 parental cells, suggesting the development of a secondary immune response via antigen spreading as a consequence of effective tumor targeting. Combination of galunisertib with PD-L1 blockade resulted in improved tumor growth inhibition and complete regressions in colon carcinoma models, demonstrating the potential synergy when cotargeting TGF beta and PD-1/PD-L1 pathways. Combination therapy was associated with enhanced anti-tumor immune related gene expression profile that was accelerated compared to anti-PD-L1 monotherapy. Conclusions: Together these data highlight the ability of galunisertib to modulate T cell immunity and the therapeutic potential of combining galunisertib with current PD-1/L1 immunotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available