4.6 Article

3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks

Journal

NATURE ENERGY
Volume 3, Issue 4, Pages 301-309

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41560-017-0071-2

Keywords

-

Funding

  1. R&D Convergence Program of National Research Council of Science and Technology (NST) of Republic of Korea
  2. Center for Advanced Meta-Materials (CAMM) through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT (MSIT) of Republic of Korea [NRF-2016M3A6B3936652, 2017K1A4A3015437, 2016M3A7B4900044, NRF-2016R1A2B4007452]

Ask authors/readers for more resources

Thermoelectric energy conversion offers a unique solution for generating electricity from waste heat. However, despite recent improvements in the efficiency of thermoelectric materials, the widespread application of thermoelectric generators has been hampered by challenges in fabricating thermoelectric materials with appropriate dimensions to perfectly fit heat sources. Herein, we report an extrusion-based three-dimensional printing method to produce thermoelectric materials with geometries suitable for heat sources. All-inorganic viscoelastic inks were synthesized using Sb2Te3 chalcogenidometallate ions as inorganic binders for Bi2Te3-based particles. Three-dimensional printed materials with various geometries showed homogenous thermoelectric properties, and their dimensionless figure-of-merit values of 0.9 (p-type) and 0.6 (n-type) were comparable to the bulk values. Conformal cylindrical thermoelectric generators made of 3D-printed half rings mounted on an alumina pipe were studied both experimentally and computationally. Simulations show that the power output of the conformal, shape-optimized generator is higher than that of conventional planar generators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available