4.4 Article

Novel Benzylic Substituted Imidazolinium, Tetrahydropyrimidinium and Tetrahydrodiazepinium Salts: Potent Carbonic Anhydrase and Acetylcholinesterase Inhibitors

Journal

CHEMISTRYSELECT
Volume 3, Issue 27, Pages 7976-7982

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/slct.201801019

Keywords

Acetylcholinesterase; carbonic anhydrase; crystal structure; enzyme inhibition; novel imidazolinium

Funding

  1. [2010. KB.FEN.13]

Ask authors/readers for more resources

The new imidazolinium, tetrahydropyrimidinium and tetrahydrodiazepinium salts were synthesized in good yield by the reaction of the corresponding N,N'-dialkylalkanediamine with triethyl orthoformate in the presence of ammonium chloride. All of the compounds were obtained, and spectroscopically characterized. The crystal structure for the 1,3-bis(4-benzyloxy-3-methoxybenzyl)-3,4,5,6-tetrahydropyrimidinium chloride (5g) was determined by single-crystal X-ray diffraction. The biological properties of all novel compounds were tested and the influence of ring size and benzylic N-substituents on the biological activities were examined. Also, they were found as effective inhibitors against cytosolic carbonic anhydrase I and II isoforms (hCA I and II), and acetylcholinesterase (AChE) enzyme. Among these compounds, 1,3-bis(4-(1-piperidinyl)benzyl)-3,4,5,6-tetrahydropyrimidinium chloride (5f) demonstrated the the best inhibition effects against hCA I, 1,3-bis(4-benzyloxy-3-methoxybenzyl)-3,4,5,6-tetrahydropyrimidinium chloride (5g) demonstrated the the best inhibition effects against cytosolic hCA II isoenzyme. On the other hand, 1,3-Bis(4-methylthiobenzyl)-3,4,5,6-tetrahydropyrimidinium chloride, (5e) demonstrated the the best inhibition effects against AChE enzyme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available