4.6 Article

Hollow Pt-Functionalized SnO2 Hemipill Network Formation Using a Bacterial Skeleton for the Noninvasive Diagnosis of Diabetes

Journal

ACS SENSORS
Volume 3, Issue 3, Pages 661-669

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.7b00955

Keywords

hollow SnO2 nanostructures; bacterial skeleton; chemiresisitve sensor; exhaled breath analyzer; diabetes

Funding

  1. KIST Institutional Program [2E27270]
  2. Global Top Project - Korea Ministry of Environment [GT-11-F-02-002-1]

Ask authors/readers for more resources

Hollow-structured nanomaterials are presented as an outstanding sensing platform because of their unique combination of high porosity in both the micro- and nanoscale, their biocompatibility, and flexible template applicability. Herein, we introduce a bacterial skeleton method allowing for cost-effective fabrication with nanoscale precision. As a proof-of-concept, we fabricated a hollow SnO2 hemipill network (HSHN) and a hollow Pt-functionalized SnO2 hemipill network (HPN). A superior detecting capability of HPN toward acetone, a diabetes biomarker, was demonstrated at low concentration (200 ppb) under high humidity (RH 80%). The detection limit reaches 3.6 ppb, a level satisfying the minimum requirement for diabetes breath diagnosis. High selectivity of the HPN sensor against C6H6, C7H8, CO, and NO vapors is demonstrated using principal component analysis (PCA), suggesting new applications of HPN for human-activity monitoring and a personal healthcare tool for diagnosing diabetes. The skeleton method can be further employed to mimic nanostructures of biomaterials with unique functionality for broad applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available