4.6 Article

Passivation of Grain Boundaries by Phenethylammonium in Formamidinium-Methylammonium Lead Halide Perovskite Solar Cells

Journal

ACS ENERGY LETTERS
Volume 3, Issue 3, Pages 647-654

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.8b00121

Keywords

-

Funding

  1. Australian Government through the Australian Renewable Energy Agency (ARENA)
  2. ARENA [2014 RND075]

Ask authors/readers for more resources

In this work, we report the benefits of incorporating phenethylammonium cation (PEA(+)) into (HC(NH2)(2)PbI3)(0.85)(CH3NH3PbBr3)(0.15) perovskite for the first time. After adding small amounts of PEA cation (< 10%), the perovskite film morphology is changed but, most importantly, grain boundaries are passivated. This is supported by Kelvin Probe Force Microscopy (KPFM). The passivation results in the increase in photoluminescence intensity and carrier lifetimes of test structures and open-circuit voltages (V-OC) of the devices as long as the addition of PEA(+) is <= 4.5%. The presence of higher-band-gap quasi-2D PEA incorporated perovskite is responsible for the grain boundary passivation, and the quasi-2D perovskites are also found to be concentrated near the TiO2 layer, revealed by PL spectroscopy. Results of moisture exposure tests show that PEA(+) incorporation is effective in slowing down the degradation of unencapsulated devices compared to the control devices without PEA(+). These findings provide insights into the operation of perovskite solar cells when large cations are incorporated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available