4.2 Article

Ion beams in SEM: An experiment towards a high brightness low energy spread electron impact gas ion source

Journal

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
Volume 29, Issue 6, Pages -

Publisher

A V S AMER INST PHYSICS
DOI: 10.1116/1.3660390

Keywords

brightness; current density; electron impact ionisation; electron probes; focused ion beam technology; ion sources; ionisation chambers; scanning electron microscopy

Funding

  1. Stichting voor Fundamenteel Onderzoek der Materie (FOM)
  2. Nederlandse Organisatie voor Wetenschppelijk Onderzoek
  3. FEI Company

Ask authors/readers for more resources

A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized by direct electron impact. The use of a very small gas chamber and a very narrow electron beam (< 100 nm) allows for a very small ionization volume, which, in turn, yields a small virtual source size and low energy spread. The authors estimate that using a high current density electron beam from a Schottky electron gun the reduced brightness of this source can exceed that of the Gallium Liquid Metal Ion Sources and the energy spread can be well below 1 eV at an optimal gas pressure and gas chamber spacing while producing more than 1 nA of usable ion beam current. In a proof-of-concept study, the authors have produced ions of helium, argon, xenon, and air from a prototype gas chamber using an electron probe inside a scanning electron microscope. Using micro-channel plates and a phosphor screen, ion beam patterns have been acquired demonstrating that a beam of ions can be produced from a miniaturized gas chamber. The authors have measured up to several hundreds of pico-amperes of ion current in a Faraday cup using an input electron probe current of similar to 14 nA with 1 keV incident energy. The authors have also verified that the ion beam current is dependent on the incident electron beam energy, gas chamber bias voltage, and the gas pressure inside the ionization chamber. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3660390]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available