4.7 Article

Fast Computing on Vehicle Dynamics Using Chebyshev Series Expansions

Journal

IEEE-ASME TRANSACTIONS ON MECHATRONICS
Volume 20, Issue 5, Pages 2563-2574

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2015.2388573

Keywords

Chebyshev series; fast solvers; theory of approximation; vehicle dynamics

Funding

  1. SEGVAUTO Research Group of the Comunidad de Madrid

Ask authors/readers for more resources

This paper focuses on faster computation techniques to integrate mechanical models in electronic advanced active safety applications. It shows the different techniques of approximation in series of functions and differential equations applied to vehicle dynamics. This allows the achievement of approximate polynomial and rational solutions with a very fast and efficient computation. First, the whole theoretical basic principles related to the techniques used are presented: orthogonality of functions, function expansion in Chebyshev and Jacobi series, approximation through rational functions, the Minimax-Remez algorithm, orthogonal rational functions, and the perturbation of dynamic systems theory, that reduces the degree of the expansion polynomials used. As an application, it is shown the obtaining of approximate solutions to the longitudinal dynamics, vertical dynamics, steering geometry, and a tyre model, all obtained through development in series of orthogonal functions with a computation much faster than those of its equivalents in the classic vehicle theory. These polynomial partially symbolic solutions present very low errors and very favorable analytical properties due to their simplicity, becoming ideal for real-time computation as those required for the simulation of evasive manoeuvres prior to a crash. This set of techniques had never been applied to vehicle dynamics before.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available