4.6 Article

Synthesis and photocatalytic activity of mesoporous g-C3N4/MoS2 hybrid catalysts

Journal

ROYAL SOCIETY OPEN SCIENCE
Volume 5, Issue 5, Pages -

Publisher

ROYAL SOC
DOI: 10.1098/rsos.180187

Keywords

photocatalyst; heterojunction; graphitic carbon nitrides

Funding

  1. National Natural Science Foundation of China [51672151]

Ask authors/readers for more resources

The key to solving environmental and energy issues through photocatalytic technology requires highly efficient, stable and eco-friendly photocatalysts. Graphitic carbon nitride (g-C3N4) is one of the most promising candidates except for its limited photoactivity. In this work, a facile and scalable one-step method is developed to fabricate an efficient heterostructural g-C3N4 photocatalyst in situ coupled with MoS2. The strong coupling effect between the MoS2 nanosheets and g-C3N4 scaffold, numerous mesopores and enlarged specific surface area helped form an effective heterojunction. As such, the photocatalytic activity of the g-C3N4/MoS2 is more than three times higher than that of the pure g-C3N4 in the degradation of RhB under visible light irradiation. Improvement of g-C3N4/MoS2 photocatalytic performance is mainly ascribed to the effective suppression of the recombination of charge carriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available