4.7 Article

Development of AlN thin films for breast cancer acoustic biosensors

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jmrt.2018.02.007

Keywords

AlN thin films; Breast cancer; Acoustic biosensors; Biofunctionalization; Reactive magnetron sputtering; Piezoelectric thin films

Ask authors/readers for more resources

Although the development of biosensors has become popular in the recent past, there are still many opportunities to develop specific designs that address public health problems of third world countries. This paper presents the initial efforts toward the development of an affordable acoustic biosensor for breast cancer detection. The core of the sensor consists of a piezoelectric AlN thin film that requires specific crystallographic and morphological features. In this study, the processing-structure relationship of our radio-frequency magnetron sputtering (r.f. MS) system was established. Al/AlN films were produced via r.f. MS varying the applied power and atmosphere composition. The films were analyzed by glancing angle X-ray diffraction, scanning electron microscopy + energy dispersive analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results indicate that applied power had a much stronger influence on the phase selection, orientation and morphology of the films and was attributed to the effect of power on ad-atom mobility on the substrate. Higher power values resulted in films better suited for biosensor applications. The presence of the Al adhesion layer favored the formation of undesirable metastable c-AlN. Preliminary results on the biofunctionalization of the films were encouraging, but require further work both in the protocol and on the effect of the film surface on this process. (C) 2018 Published by Elsevier Editora Ltda. on behalf of Brazilian Metallurgical, Materials and Mining Association.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available