4.7 Article

Pore-Scale Reconstruction and Simulation of Non-Darcy Flow in Synthetic Porous Rocks

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
Volume 123, Issue 4, Pages 2770-2786

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2017JB015296

Keywords

synthetic porous rock; micro-X-ray computed tomography; pore structure; pore-scale simulation; non-Darcy flow

Funding

  1. National Key Research and Development Program of China [2016YFC0600708, 2016YFC0801401]
  2. Yue Qi Distinguished Scholar Project of China University of Mining and Technology (Beijing)
  3. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

We image synthetic porous rocks of varied porosity and pore size by micro-computed tomography with pore-scale finite element modeling representing the pore space for single-phase fluid flow. The simulations quantify the key features of microscale flow behavior in the synthetic cores. The smaller the permeability, the greater the critical pressure gradient required for the onset of non-Darcy fluid flows, and the easier the emergence of nonlinear seepage within the tested cores. The relationship between permeability and porosity from different methods shows a power law correlation with pressure. Structural heterogeneity and anisotropy of the pore systems are shown to have a significant impact on transport through the three-dimensional pore modelexhibiting irregular flow fields. The simulated permeabilities of the tested cores vary by a factor of 2-5 depending on the fluid flow directions. With the increase of flow seepage velocity, the flow regime deviates from Darcy linear relationship and non-Darcy behavior (inertia) leads to a reduction in the effective permeability of the core. Both experiments and modeling demonstrate that the larger the porosity and permeability, the stronger the non-linear phenomenon of the seepage within the pore space. A method is proposed to estimate the non-Darcy coefficient based on simulation results, which provides a good prediction for all the tested cores. A new equation is established to predict the transition of flow patterns as a function of the apparent permeability K-* and Reynolds number Re. The K-*-Re model provides a theoretical approach to dynamically describe the transition from Darcy to Forchheimer flow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available