4.7 Review

Origins of building blocks of life: A review

Journal

GEOSCIENCE FRONTIERS
Volume 9, Issue 4, Pages 1117-1153

Publisher

CHINA UNIV GEOSCIENCES, BEIJING
DOI: 10.1016/j.gsf.2017.07.007

Keywords

Astrobiology; Biochemistry; Chemical evolution; Extraterrestrial life; Hadean Earth; Hydrothermal systems

Funding

  1. JSPS KAKENHI [26800276, 16H04074, 16K13906, 26106001]

Ask authors/readers for more resources

How and where did life on Earth originate? To date, various environments have been proposed as plausible sites for the origin of life. However, discussions have focused on a limited stage of chemical evolution, or emergence of a specific chemical function of proto-biological systems. It remains unclear what geochemical situations could drive all the stages of chemical evolution, ranging from condensation of simple inorganic compounds to the emergence of self-sustaining systems that were evolvable into modern biological ones. In this review, we summarize reported experimental and theoretical findings for prebiotic chemistry relevant to this topic, including availability of biologically essential elements (N and P) on the Hadean Earth, abiotic synthesis of life's building blocks (amino acids, peptides, ribose, nucleobases, fatty acids, nucleotides, and oligonucleotides), their polymerizations to bio-macromolecules (peptides and oligonucleotides), and emergence of biological functions of replication and compartmentalization. It is indicated from the overviews that completion of the chemical evolution requires at least eight reaction conditions of (1) reductive gas phase, (2) alkaline pH, (3) freezing temperature, (4) fresh water, (5) dry/dry-wet cycle, (6) coupling with high energy reactions, (7) heating-cooling cycle in water, and (8) extraterrestrial input of life's building blocks and reactive nutrients. The necessity of these mutually exclusive conditions clearly indicates that life's origin did not occur at a single setting; rather, it required highly diverse and dynamic environments that were connected with each other to allow intratransportation of reaction products and reactants through fluid circulation. Future experimental research that mimics the conditions of the proposed model are expected to provide further constraints on the processes and mechanisms for the origin of life. (C) 2017, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available