4.7 Article

Improving the Mechanical Stability of Metal-Organic Frameworks Using Chemical Caryatids

Journal

ACS CENTRAL SCIENCE
Volume 4, Issue 7, Pages 832-839

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscentsci.8b00157

Keywords

-

Funding

  1. MARVEL National Centre of Competence in Research of the Swiss National Science Foundation
  2. Deutsche Forschungsgemeinschaft (DFG) [SPP 1570]
  3. European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme [666983]

Ask authors/readers for more resources

Metal-organic frameworks (MOFs) have emerged as versatile materials for applications ranging from gas separation and storage, catalysis, and sensing. The attractive feature of MOFs is that, by changing the ligand and/or metal, they can be chemically tuned to perform optimally for a given application. In most, if not all, of these applications one also needs a material that has a sufficient mechanical stability, but our understanding of how changes in the chemical structure influence mechanical stability is limited. In this work, we rationalize how the mechanical properties of MOFs are related to framework bonding topology and ligand structure. We illustrate that the functional groups on the organic ligands can either enhance the mechanical stability through formation of a secondary network of nonbonded interactions or soften the material by destabilizing the bonded network of a MOF. In addition, we show that synergistic effect of the bonding network of the material and the secondary network is required to achieve optimal mechanical stability of a MOF. The developed molecular insights in this work can be used for systematic improvement of the mechanical stability of the materials by careful selection of the functional groups.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available