4.7 Article

The aldehyde dehydrogenase AldA contributes to the hypochlorite defense and is redox-controlled by protein S-bacillithiolation in Staphylococcus aureus

Journal

REDOX BIOLOGY
Volume 15, Issue -, Pages 557-568

Publisher

ELSEVIER
DOI: 10.1016/j.redox.2018.02.001

Keywords

Staphylococcus aureus; AldA; Bacillithiol; Hypochlorite stress; MD simulations

Funding

  1. ERC Consolidator Grant [GA 615585]
  2. MYCOTHIOLOME
  3. Deutsche Forschungsgemeinschaft [AN746/4-1, AN746/4-2, SPP1710]
  4. Research Training Group [GRK1947, C01]
  5. Alexander von Humboldt Post-doc Fellowship
  6. [SFB973]
  7. [C08]

Ask authors/readers for more resources

Staphylococcus aureus produces bacillithiol (BSH) as major low molecular weight (LMW) thiol which functions in thiol-protection and redox-regulation by protein S-bacillithiolation under hypochlorite stress. The aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus. Here, we have studied the expression, function, redox regulation and structural changes of AldA of S. aureus. Transcription of aldA was previously shown to be regulated by the alternative sigma factor SigmaB. Northern blot analysis revealed SigmaB-independent induction of aldA transcription under formaldehyde, methylglyoxal, diamide and NaOCl stress. Deletion of aldA resulted in a NaOCl-sensitive phenotype in survival assays, suggesting an important role of AldA in the NaOCl stress defense. Purified AldA showed broad substrate specificity for oxidation of several aldehydes, including formaldehyde, methylglyoxal, acetaldehyde and glycol aldehyde. Thus, AldA could be involved in detoxification of aldehyde substrates that are elevated under NaOCl stress. Kinetic activity assays revealed that AldA is irreversibly inhibited under H2O2 treatment in vitro due to over oxidation of Cys279 in the absence of BSH. Pre-treatment of AldA with BSH prior to H2O2 exposure resulted in reversible AldA inactivation due to S-bacillithiolation as revealed by activity assays and BSH-specific Western blot analysis. Using molecular docking and molecular dynamic simulation, we further show that BSH occupies two different positions in the AldA active site depending on the AldA activation state. In conclusion, we show here that AldA is an important target for S-bacillithiolation in S. aureus that is up-regulated under NaOCl stress and functions in protection under hypochlorite stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available