4.7 Article

Joint Precoding and Load Balancing Optimization for Energy-Efficient Heterogeneous Networks

Journal

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
Volume 14, Issue 10, Pages 5810-5822

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2015.2443044

Keywords

Energy efficiency; heterogeneous networks; load balancing; precoding design

Funding

  1. FP7 project - EU [ICT-317669 METIS]
  2. Swedish Research Council [621-2009-4555, 2012-228]
  3. ERC [305123 MORE]

Ask authors/readers for more resources

This paper considers a downlink heterogeneous network, where different types of multiantenna base stations (BSs) communicate with a number of single-antenna users. Multiple BSs can serve the users by spatial multiflow transmission techniques. Assuming imperfect channel state information at both BSs and users, the precoding, load balancing, and BS operation mode are jointly optimized for improving the network energy efficiency. We minimize the weighted total power consumption while satisfying quality-of-service constraints at the users. This problem is nonconvex, but we prove that for each BS mode combination, the considered problem has a hidden convexity structure. Thus, the optimal solution is obtained by an exhaustive search over all possible BS mode combinations. Furthermore, by iterative convex approximations of the nonconvex objective function, a heuristic algorithm is proposed to obtain a suboptimal solution of low complexity. We show that although multicell joint transmission is allowed, in most cases, it is optimal for each user to be served by a single BS. The optimal BS association condition is parameterized, which reveals how it is impacted by different system parameters. Simulation results indicate that putting a BS into sleep mode by proper load balancing is an important solution for energy savings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available