4.7 Article

Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications

Journal

PHOTONICS RESEARCH
Volume 6, Issue 2, Pages 109-116

Publisher

OPTICAL SOC AMER
DOI: 10.1364/PRJ.6.000109

Keywords

-

Categories

Ask authors/readers for more resources

In this paper, a substrate removing technique in a silicon Mach-Zehnder modulator (MZM) is proposed and demonstrated to improve modulation bandwidth. Based on the novel and optimized traveling wave electrodes, the electrode transmission loss is reduced, and the electro-optical group index and 50 Omega impedance matching are improved, simultaneously. A 2 mm long substrate removed silicon MZM with the measured and extrapolated 3 dB electro-optical bandwidth of >50 GHz and 60 GHz at the -8 V bias voltage is designed and fabricated. Open optical eye diagrams of up to 90 GBaud/s NRZ and 56 GBaud/s four-level pulse amplitude modulation (PAM-4) are experimentally obtained without additional optical or digital compensations. Based on this silicon MZM, the performance in a short-reach transmission system is further investigated. Single-lane 112 Gb/s and 128 Gb/s transmissions over different distances of 1 km, 2 km, and 10 km are experimentally achieved based on this high-speed silicon MZM. (c) 2018 Chinese Laser Press

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available