4.8 Article

Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers

Journal

MICROBIOME
Volume 6, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/s40168-018-0451-2

Keywords

Colorectal cancer; Microbiota; Diagnostic marker; Ecology

Categories

Funding

  1. RGC-GRF Hong Kong [766613, 14106145, 14111216]
  2. 135 program project China [2016YFC1303200]
  3. 973 Program China [2013CB531401]
  4. National Key Technology RD Program [2014BAI09B05]
  5. Shenzhen Virtual University Park
  6. CUHK Faculty of Medicine Grant on Microbiota Research

Ask authors/readers for more resources

Background: Alterations of gut microbiota are associated with colorectal cancer (CRC) in different populations and several bacterial species were found to contribute to the tumorigenesis. The potential use of gut microbes as markers for early diagnosis has also been reported. However, cohort specific noises may distort the structure of microbial dysbiosis in CRC and lead to inconsistent results among studies. In this regard, our study targeted at exploring changes in gut microbiota that are universal across populations at species level. Results: Based on the combined analysis of 526 metagenomic samples from Chinese, Austrian, American, and German and French cohorts, seven CRC-enriched bacteria (Bacteroides fragilis, Fusobacterium nucleatum, Porphyromonas asaccharolytica, Parvimonas micra, Prevotella intermedia, Alistipes finegoldii, and Thermanaerovibrio acidaminovorans) have been identified across populations. The seven enriched bacterial markers classified cases from controls with an area under the receiver-operating characteristics curve (AUC) of 0.80 across the different populations. Abundance correlation analysis demonstrated that CRC-enriched and CRC-depleted bacteria respectively formed their own mutualistic networks, in which the latter was disjointed in CRC. The CRC-enriched bacteria have been found to be correlated with lipopolysaccharide and energy biosynthetic pathways. Conclusions: Our study identified potential diagnostic bacterial markers that are robust across populations, indicating their potential universal use for non-invasive CRC diagnosis. We also elucidated the ecological networks and functional capacities of CRC-associated microbiota.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available