4.4 Article

On Model for Three-Dimensional Flow of Nanofluid With Heat and Mass Flux Boundary Conditions

Publisher

ASME
DOI: 10.1115/1.4038700

Keywords

three-dimensional flow; MHD; nanoparticles; flux conditions; nonlinear stretching surface

Ask authors/readers for more resources

The present paper examines magnetohydrodynamic (MHD) three-dimensional (3D) flow of viscous nanoliquid in the presence of heat and mass flux conditions. A bidirectional nonlinearly stretching surface has been employed to create the flow. Heat and mass transfer attribute analyzed via thermophoresis and Brownian diffusion aspects. Viscous liquid is electrically conducted subject to applied magnetic field. Problem formulation is made through the boundary layer approximation under small magnetic Reynolds number. Appropriate transformations yield the strong nonlinear ordinary differential system. The obtained nonlinear system has been solved for the convergent homotopic solutions. Effects of different pertinent parameters with respect to temperature and concentration are sketched and discussed. The coefficients of skin friction and heat and mass transfer rates are computed numerically.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available