4.2 Article Proceedings Paper

Elaboration of Materials with Functionality Gradients by Assembly of Chitosan-Collagen Microspheres Produced by Microfluidics

Journal

JOURNAL OF RENEWABLE MATERIALS
Volume 6, Issue 3, Pages 314-324

Publisher

SCRIVENER PUBLISHING LLC
DOI: 10.7569/JRM.2017.634186

Keywords

Hybrid microspheres; biomaterials; chitosan; collagen; functionality gradient; nerve regeneration; microfluidics

Funding

  1. EPHE

Ask authors/readers for more resources

Biopolymers extracted from renewable resources like chitosan and collagen exhibit interesting properties for the elaboration of materials designed for tissue engineering applications, among which are their hydrophilicity, biocompatibility and biodegradability. In many cases, functional recovery of an injured tissue or organ requires oriented cell outgrowth, which is particularly critical for nerve regeneration. Therefore, there is a growing interest for the elaboration of materials exhibiting functionalization gradients able to guide cells. Here, we explore an original way of elaborating such gradients by assembling particles from a library of functionalized microspheres. We propose a simple process to prepare chitosan-collagen hybrid microspheres by micro-and milli-fluidics, with adaptable dimensions and narrow size distributions. The adhesion and survival rate of PC12 cells on hybrid microspheres were compared to those on pure chitosan ones. Finally, functionalized microspheres were assembled into membranes exhibiting a functionalization gradient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available