4.7 Article

Subspace Leakage Analysis and Improved DOA Estimation With Small Sample Size

Journal

IEEE TRANSACTIONS ON SIGNAL PROCESSING
Volume 63, Issue 12, Pages 3251-3265

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2015.2422675

Keywords

Covariance matrix; subspace leakage; DOA estimation; root-MUSIC; root-swap

Funding

  1. Natural Science and Engineering Research Council (NSERC) of Canada

Ask authors/readers for more resources

Classical methods of DOA estimation such as the MUSIC algorithm are based on estimating the signal and noise subspaces from the sample covariance matrix. For a small number of samples, such methods are exposed to performance breakdown, as the sample covariance matrix can largely deviate from the true covariance matrix. In this paper, the problem of DOA estimation performance breakdown is investigated. We consider the structure of the sample covariance matrix and the dynamics of the root-MUSIC algorithm. The performance breakdown in the threshold region is associated with the subspace leakage where some portion of the true signal subspace resides in the estimated noise subspace. In this paper, the subspace leakage is theoretically derived. We also propose a two-step method that improves the performance by modifying the sample covariance matrix such that the amount of the subspace leakage is reduced. Furthermore, we introduce a phenomenon named as root-swap which occurs in the root-MUSIC algorithm in the low sample size region and degrades the performance of the DOA estimation. A new method is then proposed to alleviate this problem. Numerical examples and simulation results are given for uncorrelated and correlated sources to illustrate the improvement achieved by the proposed methods. Moreover, the proposed algorithms are combined with the pseudo-noise resampling method to further improve the performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available