4.6 Article

Three-Dimensional Magnetohydrodynamic Mixed Convection Flow of Nanofluids over a Nonlinearly Permeable Stretching/Shrinking Sheet with Velocity and Thermal Slip

Journal

APPLIED SCIENCES-BASEL
Volume 8, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/app8071128

Keywords

magnetohydrodynamic; mixed convection; nanofluids; slip conditions; dual solutions; stability analysis

Funding

  1. Universiti Kebangsaan Malaysia [DIP-2017-009]

Ask authors/readers for more resources

In this paper, the steady three-dimensional magnetohydrodynamic (MHD) mixed convection flow of nanofluids over a permeable vertical stretching/shrinking sheet with slip conditions is investigated in a numerical manner. As such, two types of nanofluids, Cu-water and Ag-water, had been considered. A similarity transformation was employed to reduce the governing equations to ordinary differential equations, which were then solved numerically using the MATLAB (Matlab R2015a, MathWorks, Natick, MA, USA, 1984) programme bvp4c. The numerical solutions derived from the ordinary differential equations subjected to the associated boundary conditions, were obtained to represent the values of the mixed convection parameter. Dual (upper and lower branch) solutions were discovered in the opposing flow region of the mixed convection parameter. A stability analysis was carried out to prove that the upper branch solution was indeed stable, while the lower branch solution was unstable. The significant effects of the governing parameters on the reduced skin friction coefficients, the reduced local Nusselt number, as well as the velocity and temperature profiles, were presented graphically and discussed in detail.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available