4.8 Article

A Multimaterial Scaffold With Tunable Properties: Toward Bone Tissue Repair

Journal

ADVANCED SCIENCE
Volume 5, Issue 6, Pages -

Publisher

WILEY
DOI: 10.1002/advs.201700817

Keywords

bioactivity; biodegradability; bone regeneration; cytocompatibility; scaffolds

Funding

  1. Natural Science Foundation of China [51575537, 81572577, 51705540]
  2. Hunan Provincial Natural Science Foundation of China [2016JJ1027]
  3. Project of Innovation-driven Plan of Central South University [2016CX023]
  4. Open-End Fund for the Valuable and Precision Instruments of Central South University
  5. fund of the State Key Laboratory of Solidification Processing in NWPU [SKLSP201605]
  6. National Postdoctoral Program for Innovative Talents [BX201700291]
  7. Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University
  8. Project of Hunan Provincial Science and Technology Plan [2017RS3008]

Ask authors/readers for more resources

Polyetheretherketone (PEEK)/-tricalcium phosphate (-TCP) scaffolds are expected to be able to combine the excellent mechanical strength of PEEK and the good bioactivity and biodegradability of -TCP. While PEEK acts as a closed membrane in which -TCP is completely wrapped after the melting/solidifying processing, the PEEK membrane degrades very little, hence the scaffolds cannot display bioactivity and biodegradability. The strategy reported here is to blend a biodegradable polymer with PEEK and -TCP to fabricate multi-material scaffolds via selective laser sintering (SLS). The biodegradable polymer first degrades and leaves caverns on the closed membrane, and then the wrapped -TCP is exposed to body fluid. In this study, poly(l-lactide) (PLLA) is adopted as the biodegradable polymer. The results show that large numbers of caverns form on the membrane with the degradation of PLLA, enabling direct contact between -TCP and body fluid, and allowing for their ion-exchange. As a consequence, the scaffolds display the bioactivity, biodegradability and cytocompatibility. Moreover, bone defect repair studies reveal that new bone tissues grow from the margin towards the center of the scaffolds from the histological analysis. The bone defect region is completely connected to the host bone end after 8 weeks of implantation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available