4.7 Article

COP-SLAM: Closed-Form Online Pose-Chain Optimization for Visual SLAM

Journal

IEEE TRANSACTIONS ON ROBOTICS
Volume 31, Issue 5, Pages 1194-1213

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2015.2473455

Keywords

Computer vision; pose-graph optimization; simultaneous localization and mapping (SLAM)

Categories

Ask authors/readers for more resources

In this paper, we analyze and extend the recently proposed closed-form online pose-chain simultaneous localization and mapping (SLAM) algorithm. Pose-chains are a specific type of extremely sparse pose-graphs and a product of contemporary SLAM front-ends, which perform accurate visual odometry and reliable appearance-based loop detection. They are relevant for challenging robotic applications in large-scale 3-D environments for which frequent loop detection is not desired or not possible. Closed-form online pose-chain SLAM efficiently and accurately optimizes pose-chains by exploiting their Lie group structure. The convergence and optimality properties of this solution are discussed in detail and are compared against state-of-the-art iterative methods. We also provide a novel solution space, that of similarity transforms, which has not been considered earlier for the proposed algorithm. This allows for closed-form optimization of pose-chains that exhibit scale drift, which is important to monocular SLAM systems. On the basis of extensive experiments, specifically targeting 3-D pose-chains and using a total of 60 km of challenging binocular and monocular data, it is shown that the accuracy obtained by closed-form online pose-chain SLAM is comparable with that of state-of-the-art iterative methods, while the time it needs to compute its solution is orders of magnitudes lower. This novel SLAM technique thereby is relevant to a broad range of robotic applications and computational platforms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available