4.8 Article

Polyisobutylene-Based pH-Responsive Self-Healing Polymeric Gels

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 16, Pages 8779-8788

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b01272

Keywords

self-healing; amino acids; polyisobutylene; reversible sol-gel transition; storage modulus

Funding

  1. Department of Science and Technology (DST), India [SR/S1/OC-51/2010]
  2. Council of Scientific and Industrial Research (CSIR), Government of India

Ask authors/readers for more resources

This work demonstrates the successful application of dynamic covalent chemistry for the construction of self-healing gels from side-chain primary amine leucine pendant diblock copolymers of polyisobutylene (PIB) ((P(H2N-Leu-HEMA)-b-PIB)) in the presence of PIB based dialdehyde functionalized cross-linker (HOC-PIB-CHO) through imine (-HC=N-) bond formation without aiding any external stimuli. Gels were synthesized in 1,4-dioxane at room temperature at varied wt % of gelator concentration, [H2N]/[CHO] ratios and molecular weight of the block segments. The mechanical property of gels was examined by rheological measurements. We observed higher value of storage modulus (G') than the loss modulus (G) within the linearity limits of deformation, indicating the rheological behavior in the gel is dominated by an elastic property rather than a viscous property. The G' values significantly depend upon the extent of cross-linking in the gel network. To establish self-healing property of the gels, rheology analysis through step-strain measurements (strain = 0.1 to 200%) at 25 degrees C was performed. The polymeric gel network shows reversible sol gel transition for several cycles by adjusting the pH of the medium with the help of hydrochloric acid (HCl) and triethylamine (Et3N) triggers. FT-IR spectroscopy established formation of imine bonds in the gel network and these gels showed poor swelling behavior in various organic solvents because of the small interstitial porosity, confirmed by field emission-scanning electron microscopy (FE-SEM).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available