4.4 Article

Surface Functionalization of Hepatitis E Virus Nanoparticles Using Chemical Conjugation Methods

Journal

JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
Volume -, Issue 135, Pages -

Publisher

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/57020

Keywords

Bioengineering; Issue 135; Cysteine replacement; chemical conjugation; hepatitis E; virus-like particles; multivalent ligand display; targeting ligand

Funding

  1. NIH [AI095382, EB021230, CA198880]
  2. National Institute of Food and Agriculture
  3. Finland Distinguished Professor program

Ask authors/readers for more resources

Virus-like particles (VLPs) have been used as nanocarriers to display foreign epitopes and/or deliver small molecules in the detection and treatment of various diseases. This application relies on genetic modification, self-assembly, and cysteine conjugation to fulfill the tumor-targeting application of recombinant VLPs. Compared with genetic modification alone, chemical conjugation of foreign peptides to VLPs offers a significant advantage because it allows a variety of entities, such as synthetic peptides or oligosaccharides, to be conjugated to the surface of VLPs in a modulated and flexible manner without alteration of the VLP assembly. Here, we demonstrate how to use the hepatitis E virus nanoparticle (HEVNP), a modularized theranostic capsule, as a multifunctional delivery carrier. Functions of HEVNPs include tissue-targeting, imaging, and therapeutic delivery. Based on the well-established structural research of HEVNP, the structurally independent and surface-exposed residues were selected for cysteine replacement as conjugation sites for maleimidelinked chemical groups via thiol-selective linkages. One particular cysteine-modified HEVNP (a Cys replacement of the asparagine at 573 aa (HEVNP-573C)) was conjugated to a breast cancer cell-specific ligand, LXY30 and labeled with near-infrared (NIR) fluorescence dye (Cy5.5), rendering the tumor-targeted HEVNPs as effective diagnostic capsules (LXY30-HEVNP-Cy5.5). Similar engineering strategies can be employed with other macromolecular complexes with well-known atomic structures to explore potential applications in theranostic delivery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available