4.5 Article

Research on Real-Time Local Rainfall Prediction Based on MEMS Sensors

Journal

JOURNAL OF SENSORS
Volume 2018, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2018/6184713

Keywords

-

Funding

  1. National Key Research and Development Program of China [2016YFB0502601]
  2. Major Science and Technology Program for Water Pollution Control and Treatment [2013ZX07105-005-003]
  3. Fundamental Research Funds for the Central Universities [2042017kf0211]

Ask authors/readers for more resources

A more accurate and timely rainfall prediction is needed for flood disaster reduction and prevention in Wuhan. The in situ microelectromechanical systems' (MEMS) sensors can provide high time and spatial resolution of weather parameter measurement, but they suffer from stochastic measurement error. In order to apply MEMS sensors in real-time rainfall prediction in Wuhan, firstly, seasonal trend decomposition using Loess (STL) algorithm is utilized to decompose the observed time series into trend, seasonal, and remainder components. The trend of the observed series is compared with the corresponding trend of the data downloaded from the authoritative website with the same weather parameter in terms of Euclidean distance and cosine similarity. The similarity demonstrates that the observation of MEMS sensors is believable. Secondly, the long short-term memory (LSTM) is used to predict the real-time rainfall based on the observed data. Compared with autoregressive and moving average (ARMA), random forest (RF), support vector machine (SVM), and back propagation neural networks (BPNNs), LSTM not only performs as well as ARMA in real-time rainfall prediction but also outperforms the other four models in seasonal rainfall pattern description and seasonal real-time rainfall prediction. Our experiment results show that more detailed, timely, and accurate rainfall prediction can be achieved by using LSTM on the MEMS weather sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available