4.6 Article

Gait Dynamics in Parkinson's Disease: Short Gait Trials Stitched Together Provide Different Fractal Fluctuations Compared to Longer Trials

Journal

FRONTIERS IN PHYSIOLOGY
Volume 9, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2018.00861

Keywords

walking; gait variability; Parkinson's disease; detrended fluctuation analysis; scaling exponent; nonlinear dynamics; gait analysis

Categories

Funding

  1. Center for Research in Human Movement Variability of the University of Nebraska at Omaha, NIH [P20GM109090]
  2. University Committee on Research and Creative Activity of the University of Nebraska at Omaha

Ask authors/readers for more resources

The fractal analysis of stride-to-stride fluctuations in walking has become an integral part of human gait research. Fractal analysis of stride time intervals can provide insights into locomotor function and dysfunction, but its application requires a large number of strides, which can be difficult to collect from people with movement disorders such as Parkinson's disease. It has recently been suggested that stitching together short gait trials to create a longer time series could be a solution. The objective of this study was to determine if scaling exponents from stitched stride time series were similar to those from continuous, longer stride time series. Fifteen young adults, fourteen older adults, and thirteen people with Parkinson's disease walked around an indoor track in three blocks: one time 15 min, five times 3 min, and thirty times 30 s. Stride time intervals were determined from gait events recorded with instrumented insoles, and the detrended fluctuation analysis was applied to each stride time series of 512 strides. There was no statistically significant difference between scaling exponents in the three blocks, but intra-class correlation revealed very low between-blocks reliability of scaling exponents. This result challenges the premise that the stitching procedure could provide reliable information about gait dynamics, as it suggests that fractal analysis of stitched time series does not capture the same dynamics as gait recorded continuously. The stitching procedure cannot be considered as a valid alternative to the collection of continuous, long trials. Further studies are recommended to determine if the application of fractal analysis is limited by its own methodological considerations (i.e., long time series), or if other solutions exists to obtain reliable scaling exponents in populations with movement disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available