4.2 Article

Algorithms and strategies in short-read shotgun metagenomic reconstruction of plant communities

Journal

APPLICATIONS IN PLANT SCIENCES
Volume 6, Issue 3, Pages -

Publisher

WILEY
DOI: 10.1002/aps3.1034

Keywords

ancient DNA; bioinformatics; metagenomics; next-generation sequencing; paleoecology; paleovegetation

Categories

Funding

  1. Gerstner Family Foundation

Ask authors/readers for more resources

Premise of the StudyDNA may be preserved for thousands of years in very cold or dry environments, and plant tissue fragments and pollen trapped in soils and shallow aquatic sediments are well suited for the molecular characterization of past floras. However, one obstacle in this area of study is the limiting bias in the bioinformatic classification of short fragments of degraded DNA from the large, complex genomes of plants. MethodsTo establish one possible baseline protocol for the rapid classification of short-read shotgun metagenomic data for reconstructing plant communities, the read classification programs Kraken, Centrifuge, and MegaBLAST were tested on simulated and ancient data with classification against a reference database targeting plants. ResultsPerformance tests on simulated data suggest that Kraken and Centrifuge outperform MegaBLAST. Kraken tends to be the most conservative approach with high precision, whereas Centrifuge has higher sensitivity. Reanalysis of 13,000 years of ancient sedimentary DNA from North America characterizes potential post-glacial vegetation succession. DiscussionClassification method choice has an impact on performance and any downstream interpretation of results. The reanalysis of ancient DNA from glacial lake sediments yielded vegetation histories that varied depending on method, potentially changing paleoecological conclusions drawn from molecular evidence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available