4.5 Review

A Review of Self-Healing Concrete for Damage Management of Structures

Journal

ADVANCED MATERIALS INTERFACES
Volume 5, Issue 17, Pages -

Publisher

WILEY
DOI: 10.1002/admi.201800074

Keywords

bacteria-assisted self-healing; concrete; mineral admixtures; mortar; polymers; self-healing

Funding

  1. COST Action [CA15202]
  2. EPSRC [EP/P02081X/1] Funding Source: UKRI

Ask authors/readers for more resources

The increasing concern for safety and sustainability of structures is calling for the development of smart self-healing materials and preventive repair methods. The appearance of small cracks (<300 mu m in width) in concrete is almost unavoidable, not necessarily causing a risk of collapse for the structure, but surely impairing its functionality, accelerating its degradation, and diminishing its service life and sustainability. This review provides the state-of-the-art of recent developments of self-healing concrete, covering autogenous or intrinsic healing of traditional concrete followed by stimulated autogenous healing via use of mineral additives, crystalline admixtures or (superabsorbent) polymers, and subsequently autonomous self-healing mechanisms, i.e. via, application of micro-, macro-, or vascular encapsulated polymers, minerals, or bacteria. The (stimulated) autogenous mechanisms are generally limited to healing crack widths of about 100-150 mu m. In contrast, most autonomous self-healing mechanisms can heal cracks of 300 mu m, even sometimes up to more than 1 mm, and usually act faster. After explaining the basic concept for each self-healing technique, the most recent advances are collected, explaining the progress and current limitations, to provide insights toward the future developments. This review addresses the research needs required to remove hindrances that limit market penetration of self-healing concrete technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available