4.5 Article

Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings

Journal

SAUDI JOURNAL OF BIOLOGICAL SCIENCES
Volume 25, Issue 2, Pages 313-319

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.sjbs.2017.08.013

Keywords

Silver nanoparticles; XRD; Lupinus termis; Growth potential

Categories

Funding

  1. King Saud University [RGP-231]

Ask authors/readers for more resources

The current study reports rapid and easy method for synthesis of eco-friendly silver nanoparticles (AgNPs) using Coriandrum sativum leaves extract as a reducing and covering agent. The bio-reductive synthesis of AgNPs was monitored using a scanning double beam UV-vis spectrophotometer. Transmission electron microscopy (TEM) was used to characterize the morphology of AgNPs obtained from plant extracts. X-ray diffraction (XRD) patterns of AgNPs indicate that the structure of AgNPs is the face centered cubic structure of metallic silver. The surface morphology and topography of the AgNPs were examined by scanning electron microscopy and the energy dispersive spectrum revealed the presence of elemental silver in the sample. The silver phyto nanoparticles were collected from plant extract and tested growth potential and metabolic pattern in (Lupinus termis L.) seedlings upon exposure to different concentrations of AgNPs. The seedlings were exposed to various concentrations of (0, 0.1, 0.3 and 0.5 mg L-1) AgNPs for ten days. Significant reduction in shoot and root elongation, shoot and root fresh weights, total chlorophyll and total protein contents were observed under the higher concentrations of AgNPs. Exposure to 0.5 mg L-1 of AgNPs decreased sugar contents and caused significant foliar proline accumulation which considered as an indicator of the stressful effect of AgNPs on seedlings. AgNPs exposure resulted in a dose dependent decrease in different growth parameters and also caused metabolic disorders as evidenced by decreased carbohydrates and protein contents. Further studies needed to find out the efficacy, longevity and toxicity of AgNPs toward photosynthetic system and antioxidant parameters to improve the current investigation. (C) 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available