4.7 Article

Profiling-Based Workload Consolidation and Migration in Virtualized Data Centers

Journal

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TPDS.2014.2313335

Keywords

Virtual machine; server consolidation; live migration; cloud computing; energy efficiency

Funding

  1. National High Technology Research 863 Major Program of China [2011AA01A207]
  2. National Natural Science Foundation of China [61272128]

Ask authors/readers for more resources

Improving energy efficiency of data centers has become increasingly important nowadays due to the significant amounts of power needed to operate these centers. An important method for achieving energy efficiency is server consolidation supported by virtualization. However, server consolidation may incur significant degradation to workload performance due to virtual machine (VM) co-location and migration. How to reduce such performance degradation becomes a critical issue to address. In this paper, we propose a profiling-based server consolidation framework which minimizes the number of physical machines (PMs) used in data centers while maintaining satisfactory performance of various workloads. Inside this framework, we first profile the performance losses of various workloads under two situations: running in co-location and experiencing migrations. We then design two modules: (1) consolidation planning module which, given a set of workloads, minimizes the number of PMs by an integer programming model, and (2) migration planning module which, given a source VM placement scenario and a target VM placement scenario, minimizes the number of VM migrations by a polynomial time algorithm. Also, based on the workload performance profiles, both modules can guarantee the performance losses of various workloads below configurable thresholds. Our experiments for workload profiling are conducted with real data center workloads and our experiments on our two modules validate the integer programming model and the polynomial time algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available