4.6 Article

Analysis of Shape Geometry and Roughness of Ti6Al4V Parts Fabricated by Nanosecond Laser Ablation

Journal

MICROMACHINES
Volume 9, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/mi9070324

Keywords

laser milling; process parameters; 3D measurement; conoscopic holography; roughness

Ask authors/readers for more resources

Laser milling is a micro-machining process that uses a laser beam as a tool to remove material through the layer-by-layer ablation mechanism. Generally in laser ablation, the quality of parts is reduced by melt accretions and thermal damage; therefore, this problem is reduced with shorter pulse duration, although ablation efficiency decreases as well. Thus, laser ablation in the nanosecond range still offers a good compromise between process quality and efficiency. Therefore, laser milling with nanosecond laser ablation requires an accurate study to reduce geometric defects induced by the process. The aim of this paper was to study the shape geometry and roughness of Ti6Al4V parts fabricated by laser milling using a nanosecond Nd:YAG laser source. The impact of the laser processing parameters on machining outcomes was studied in order to determine the optimized processing conditions for reducing geometrical defects and improving surface quality. In particular, the influence of average laser power, frequency, and scanning speed was investigated. The geometry of micro-parts was revealed using a 3D digitizing system, the Optimet Mini Conoscan 4000, which combines a non-contact, single-point measuring sensor based on conoscopic holography technology. The use of this measurement technology yielded complete information of the shape geometry and dimensions of the built parts. In addition, the roughness of manufactured surfaces was assessed to complete the analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available