4.8 Article

Multi-functional bismuth-doped bioglasses: combining bioactivity and photothermal response for bone tumor treatment and tissue repair

Journal

LIGHT-SCIENCE & APPLICATIONS
Volume 7, Issue -, Pages -

Publisher

CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS
DOI: 10.1038/s41377-018-0007-z

Keywords

-

Categories

Funding

  1. Program for Innovative Research Team in University of Ministry of Education of China [IRT_17R38]
  2. National Natural Science Foundation of China [51672085]
  3. Key Program of Guangzhou Scientific Research Special Projects [201607020009]
  4. Joint Fund of Ministry of Education of China
  5. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Treatment of large bone defects derived from bone tumor surgery is typically performed in multiple separate operations, such as hyperthermia to extinguish residual malignant cells or implanting bioactive materials to initiate apatite remineralization for tissue repair; it is very challenging to combine these functions into a material. Herein, we report the first photothermal (PT) effect in bismuth (Bi)-doped glasses. On the basis of this discovery, we have developed a new type of Bi-doped bioactive glass that integrates both functions, thus reducing the number of treatment cycles. We demonstrate that Bi-doped bioglasses (BGs) provide high PT efficiency, potentially facilitating photoinduced hyperthermia and bioactivity to allow bone tissue remineralization. The PT effect of Bi-doped BGs can be effectively controlled by managing radiative and non-radiative processes of the active Bi species by quenching photoluminescence (PL) or depolymerizing glass networks. In vitro studies demonstrate that such glasses are biocompatible to tumor and normal cells and that they can promote osteogenic cell proliferation, differentiation, and mineralization. Upon illumination with near-infrared (NIR) light, the bioglass (BG) can efficiently kill bone tumor cells, as demonstrated via in vitro and in vivo experiments. This indicates excellent potential for the integration of multiple functions within the new materials, which will aid in the development and application of novel biomaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available