4.8 Article

Dual-color deep-tissue three-photon microscopy with a multiband infrared laser

Journal

LIGHT-SCIENCE & APPLICATIONS
Volume 7, Issue -, Pages -

Publisher

CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS
DOI: 10.1038/s41377-018-0012-2

Keywords

-

Categories

Funding

  1. Agence Nationale de la Recherche [ANR-11-EQPX-0029, ANR-10-LABX-0039-PALM, ANR-10-LABX-65]
  2. European Research Council [ERC-CoG 649117]

Ask authors/readers for more resources

Multiphoton microscopy combined with genetically encoded fluorescent indicators is a central tool in biology. Three-photon (3P) microscopy with excitation in the short-wavelength infrared (SWIR) water transparency bands at 1.3 and 1.7 mu m opens up new opportunities for deep-tissue imaging. However, novel strategies are needed to enable in-depth multicolor fluorescence imaging and fully develop such an imaging approach. Here, we report on a novel multiband SWIR source that simultaneously emits ultrashort pulses at 1.3 and 1.7 mu m that has characteristics optimized for 3P microscopy: sub-70 fs duration, 1.25 MHz repetition rate, and mu J-range pulse energy. In turn, we achieve simultaneous 3P excitation of green fluorescent protein (GFP) and red fluorescent proteins (mRFP, mCherry, tdTomato) along with third-harmonic generation. We demonstrate in-depth dual-color 3P imaging in a fixed mouse brain, chick embryo spinal cord, and live adult zebrafish brain, with an improved signal-to-background ratio compared to multicolor two-photon imaging. This development opens the way towards multiparametric imaging deep within scattering tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available