4.5 Article

Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 302, Issue 1, Pages F116-F128

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00184.2011

Keywords

stem cells; microenvironment; renal regeneration; niche; renal repair

Funding

  1. Italian Ministry of University and Research
  2. Regione Piemonte, PISTEM

Ask authors/readers for more resources

Bussolati B, Moggio A, Collino F, Aghemo G, D'Armento G, Grange C, Camussi G. Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133(+) progenitors through Oct4/miR-145 balance. Am J Physiol Renal Physiol 302: F116-F128, 2012. First published September 7, 2011; doi:10.1152/ajprenal.00184.2011.-Low-oxygen tension is an important component of the stem cell microenvironment. In rodents, renal resident stem cells have been described in the papilla, a relatively hypoxic region of the kidney. In the present study, we found that CD133(+) cells, previously described as renal progenitors in the human cortex, were enriched in the renal inner medulla and localized within the Henle's loop and thin limb segments. Once isolated, the CD133(+) cell population expressed renal embryonic and stem-related transcription factors and was able to differentiate into mature renal epithelial cells. When injected subcutaneously in immunodeficient mice within Matrigel, CD133(+) cells generated canalized structures positive for renal specific markers of different nephron segments. Oct4A levels and differentiation potential of papillary CD133(+) cells were higher than those of CD133(+) cells from cortical tubuli. Hypoxia was able to promote the undifferentiated phenotype of CD133(+) progenitors from papilla. Hypoxia stimulated clonogenicity, proliferation, vascular endothelial growth factor synthesis, and expression of CD133 that were in turn reduced by epithelial differentiation with parallel HIF-1 alpha downregulation. In addition, hypoxia downregulated microRNA-145 and promoted the synthesis of Oct4A. Epithelial differentiation increased microRNA-145 and reduced Oct4 level, suggesting a balance between Oct4 and microRNA-145. MicroRNA-145 overexpression in CD133(+) cells induced down-relation of Oct4A at the protein level, inhibited cell proliferation, and stimulated terminal differentiation. This study underlines the role of the hypoxic microenvironment in controlling the proliferation and maintaining a progenitor phenotype and stem/progenitor properties of CD133(+) cells of the nephron. This mechanism may be at the basis of the maintenance of a CD133(+) population in the papillary region and may be involved in renal regeneration after injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available