4.6 Article

A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 6, Issue 8, Pages 2139-2147

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7tc05758j

Keywords

-

Funding

  1. National Natural Science Foundation of China [51673121, 51473100]
  2. China Postdoctoral Science Foundation [2017M610601]

Ask authors/readers for more resources

Graphene/rubber nanocomposites have attracted increasing attention for their fantastic applications in varied wearable electronics. However, the mechanical and functional properties of graphene/rubber nanocomposites are often limited by their weak interfacial interactions, such as ionic and hydrogen bonding. Here, we propose a covalently bonded graphene/rubber nanocomposite with a well-organized graphene nanostructure for versatile strain-sensing applications. Briefly, biological phytic acid was chosen as a covalent-bonding bridge to co-crosslink graphene oxide nanosheets and epoxidized natural rubber chains via the ring-opening reaction of epoxy groups. Benefiting from the covalently bonded interface, the obtained nanocomposite exhibited dramatically enhanced mechanical properties. Compared with the sulfur-cured sample, the tensile strength and elongation at break increased by 67.43% and 116.55%, respectively. Moreover, the covalent linkage facilitates the formation of a well-organized graphene network, which remarkably enhances the sensitivity and stability of the as-prepared strain sensors. The resultant sensors can monitor both large-scale and tiny human motion and exhibit great potential in the application of sign language recognition. This covalently bonded graphene/rubber interface opens the door to tailored design and low-cost fabrication of well-organized graphene nanostructures for multifunctional applications in electronic sensors, electromagnetic shielding materials, actuators for artificial muscles, etc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available