4.6 Article

A microporous metal-organic framework with commensurate adsorption and highly selective separation of xenon

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 6, Issue 11, Pages 4752-4758

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta11321h

Keywords

-

Funding

  1. Radiochemistry 909 program in China Academy of Engineering Physics (CAEP)
  2. National Natural Science Foundation of China [21501158]
  3. Welch Foundation [AX-1730]

Ask authors/readers for more resources

The separation of xenon (Xe) and krypton (Kr) becomes increasingly important due to the industrial significance of high-purity Xe gas and the concern with reprocessing radioactive isotopes of Xe and Kr at parts per million concentrations from the off-gas of used nuclear fuel. Current separation processes mainly rely on energy and capital intensive cryogenic distillation. Thus, more economical and energy-efficient alternatives, such as physisorptive separation, using porous materials are needed to be developed. Herein, we present a microporous metal-organic framework (MOF-Cu-H) in which the suitable pore/cage-like structure with a precise size matching with the xenon atom leads to its commensurate adsorption phenomenon of Xe under ambient conditions and superior performance for Xe capture and separation. MOF-Cu-H exhibits by far the highest Xe Henry coefficient, remarkable Xe/Kr selectivity and significantly high Xe adsorption capacity at very low partial pressures relevant to nuclear fuel reprocessing. Temperature dependent isotherms, adsorption kinetics experiments, single column breakthrough curves and molecular simulation studies collaboratively support the claim, underlining the potential of this material for energy and cost-effective removal of xenon from nuclear fuel reprocessing plants compared with cryogenic distillation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available