4.6 Article

A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 6, Issue 2, Pages 659-671

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta08038g

Keywords

-

Funding

  1. European Union Seventh Framework Program [316494]
  2. PERSEO-PERovskite-based Solar cells: towards high Efficiency and long-term stability (Bando PRIN Italian Ministry of University and Scientific Research Decreto Direttoriale) [2488, 20155LECAJ]

Ask authors/readers for more resources

In the present work we used some crystallization trends which could be classified as a Crystal Engineering (CE) approach, for deposition of a pure cubic-phase thin film of CH(3)NH(3)Pbl(3) (MAPbl(3)) on the surface of a mesoporous TiO2 layer. Accordingly, by using the CE approach, we fabricated high efficiency perovskite solar cells (PSCs) and perovskite solar modules (PSMs) utilizing several Hole Transport Layers (HTLs). We optimized the sequential deposition method, developing the entire realization procedure in air. The results show that the CE approach remarkably improved the device performance reaching a power conversion efficiency of 17%, 16.8% and 7% for spiro-OMeTAD, P3HT and HTL free (direct contact of the perovskite layer with the gold layer) PSCs, respectively. Furthermore, perovskite solar modules (active area of 10.1 cm (2)), which are fabricated by the CE approach, could reach an overall efficiency of 13% and 12.1% by using spiro-OMeTAD and P3HT as HTLs, respectively. The sealed modules showed promising results in terms of stability maintaining 70% of the initial efficiency after 350 hours of light soaking at the maximum power point.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available