4.6 Article

Synergism of molybdenum nitride and palladium for high-efficiency formic acid electrooxidation

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 6, Issue 17, Pages 7623-7630

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta02488j

Keywords

-

Funding

  1. National Natural Science Foundation of China [21631004, 21601055, 21571054, 21401048]
  2. Natural Science Foundation of Heilongjiang Province [B2017008]
  3. University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province [UNPYSCT-2016076, UNPYSCT-2017123]
  4. Heilongjiang University Excellent Youth Foundation

Ask authors/readers for more resources

The direct formic acid fuel cell (DFAFC) has received increasing attention in the sustainable and clean energy field. However, the high cost, poor durability, and shortage of palladium (Pd) based catalysts for the formic acid oxidation reaction (FAOR) restrict the large-scale application of DFAFC. Herein, molybdenum nitride/reduced graphene oxide (Mo2N/rGO) was designed as an effective cocatalyst of Pd for FAOR based on an assembly-immobilization method. It is shown that the small-sized Mo2N is well dispersed on rGO with high density, which is favorable for the post-loading deposition of Pd onto the rGO to form a strongly coupled Pd-Mo2N structure. The strong interaction between Pd and Mo2N, verified by a series of characterizations, is helpful for promoting the performance of Pd. Electrochemical tests indicate that the Pd-Mo2N/rGO catalyst shows superior activity to other Pd based catalysts, with a current density of 532.7 mA mgPd(-1), which is 1.7 and 2.2 times greater than those of Pd/reduced graphene oxide (Pd/rGO) and Pd/Vulcan XC-72 (Pd/VC), respectively. In addition, Pd-Mo2N/rGO exhibits enhanced CO tolerance and good stability. The good performance is mainly ascribed to the intimate contact between Mo2N and Pd which gives enhanced synergistic action. The excellent performance of Pd-Mo2N/rGO makes it a potential electrocatalyst for DFAFC applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available