4.4 Article

QCD-induced electroweak phase transition

Journal

JOURNAL OF HIGH ENERGY PHYSICS
Volume -, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1007/JHEP01(2018)159

Keywords

Cosmology of Theories beyond the SM; Field Theories in Higher Dimensions

Funding

  1. European Union's Horizon research and innovation programme under the Marie Sklodowska-Curie grant [690575]

Ask authors/readers for more resources

Phase transitions associated with nearly conformal dynamics are known to lead to significant supercooling. A notorious example is the phase transition in Randall-Sundrum models or their CFT duals. In fact, it was found that the phase transition in this case is first-order and the tunneling probability for the radion/dilaton is so small that the system typically remains trapped in the false vacuum and the phase transition never completes. The universe then keeps expanding and cooling. Eventually the temperature drops below the QCD scale. We show that the QCD condensates which subsequently form give an additional contribution to the radion/dilaton potential, an effect which had been ignored so far. This significantly reduces the barrier in the potential and allows the phase transition to complete in a substantially larger region of parameter space. Due to the supercooling, electroweak symmetry is then broken simultaneously. This class of models therefore naturally leads to an electroweak phase transition taking place at or below QCD temperatures, with interesting cosmological implications and signatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available