4.5 Article

Forward deterministic pricing of options using Gaussian radial basis functions

Journal

JOURNAL OF COMPUTATIONAL SCIENCE
Volume 24, Issue -, Pages 209-217

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jocs.2017.05.016

Keywords

Option pricing; Fokker-Planck equation; Radial basis function; Dirac delta function; Kolmogorov forward equation

Ask authors/readers for more resources

The price of a fixed-term option is the expected value of the payoff at the time of maturity. When not analytically available, the option price is computed using stochastic or deterministic numerical methods. The most common approach when using deterministic methods is to solve a backward partial differential equation (PDE) such as the Black-Scholes equation for the option value. The problem can alternatively be formulated based on a forward PDE for the probability of the asset value at the time of maturity. This enables simultaneous pricing of several contracts with different payoffs written on the same underlying asset. The main drawback is that the initial condition is a (non-smooth) Dirac function. We show that by using an analytical expansion of the solution for the first part of the time interval, and applying a high order accurate radial basis function (RBF) approximation in space, we can derive a competitive forward pricing method. We evaluate the proposed method on European call options and barrier options, and show that even for just one payoff it is more efficient than solving the corresponding backward PDE. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available