4.7 Article

Coordinated Operation of Electricity and Natural Gas Systems: A Convex Relaxation Approach

Journal

IEEE TRANSACTIONS ON SMART GRID
Volume 10, Issue 3, Pages 3342-3354

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSG.2018.2825103

Keywords

Convex relaxation; coordinated operation; natural gas network; unit commitment

Ask authors/readers for more resources

The variability in the generation dispatch of the natural gas generation units will lead to fluctuation in natural gas demand profile that could further jeopardize the security of the natural gas network. The coordinated operation of electricity and natural gas infrastructure systems would help to improve the security and reliability measures in both infrastructure systems and mitigate the risk of demand curtailment. The electricity and natural gas network operation problems are non-convex mixed-integer nonlinear programming problems that are hard to solve in polynomial time. The non-convex feasible regions are formed by the Weymouth constraint and the introduced binary commitment decision variables in the natural gas and electricity network operation problems, respectively. This paper utilized a sparse semidefinite programming (SDP) relaxation to procure the optimal solution for the coordinated operation of electricity and natural gas networks. The presented algorithm leverages the sparseness of the natural gas network to construct several small matrices of lifting variables that are used to form a tight and traceable SDP relaxation. A set of valid constraints that tighten the relaxation ensures the exactness of the solution procured from the relaxed problem. The effectiveness of the presented approach is shown in case studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available