4.7 Article

Arabidopsis Kunitz Trypsin Inhibitors in Defense Against Spider Mites

Journal

FRONTIERS IN PLANT SCIENCE
Volume 9, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2018.00986

Keywords

plant-herbivore interphase; Tetranychus urticae; Arabidopsis thaliana; serine protease inhibitors; cysteine protease inhibitors; spider mite digestion

Categories

Funding

  1. Ministerio de Economia y Competitividad of Spain [BIO2014-53508-R, 618105-FACCE-Era Net Plus, BIO2017-83472-R]

Ask authors/readers for more resources

Tetranychus urticae (two-spotted spider mite) is a striking example of polyphagy among herbivores with an extreme record of pesticide resistance and one of the most significant pests in agriculture. The T. urticae genome contains a large number of cysteine-and serine-proteases indicating their importance in the spider mite physiology. This work is focused on the potential role of the Kunitz trypsin inhibitor (KTI) family on plant defense responses against spider mites. The molecular characterization of two of these genes, AtKTI4 and AtKTI5, combined with feeding bioassays using T-DNA insertion lines for both genes was carried out. Spider mite performance assays showed that independent KTI silencing Arabidopsis lines conferred higher susceptibility to T. urticae than WT plants. Additionally, transient overexpression of these inhibitors in Nicotiana benthamiana demonstrated their ability to inhibit not only serine-but also cysteine-proteases, indicating the bifunctional inhibitory role against both types of enzymes. These inhibitory properties could be involved in the modulation of the proteases that participate in the hydrolysis of dietary proteins in the spider mite gut, as well as in other proteolytic processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available