4.8 Article

Energetics and conformational pathways of functional rotation in the multidrug transporter AcrB

Journal

ELIFE
Volume 7, Issue -, Pages -

Publisher

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.31715

Keywords

-

Categories

Funding

  1. Japan Society for the Promotion of Science [24770159, 25291036]
  2. Japan Science and Technology Agency [JPMJPR1679]
  3. Research Organization for Information Science and Technology [hp120027]
  4. Ministry of Education, Culture, Sports, Science, and Technology [hp150269, hp160223, hp170255]
  5. Japan Agency for Medical Research and Developmen
  6. RIKEN Dynamic Structural Biology Project
  7. RIKEN Advanced Institute for Computational Science

Ask authors/readers for more resources

The multidrug transporter AcrB transports a broad range of drugs out of the cell by means of the proton-motive force. The asymmetric crystal structure of trimeric AcrB suggests a functionally rotating mechanism for drug transport. Despite various supportive forms of evidence from biochemical and simulation studies for this mechanism, the link between the functional rotation and proton translocation across the membrane remains elusive. Here, calculating the minimum free energy pathway of the functional rotation for the complete AcrB trimer, we describe the structural and energetic basis behind the coupling between the functional rotation and the proton translocation at atomic resolution. Free energy calculations show that protonation of Asp408 in the transmembrane portion of the drug-bound protomer drives the functional rotation. The conformational pathway identifies vertical shear motions among several transmembrane helices, which regulate alternate access of water in the transmembrane as well as peristaltic motions that pump drugs in the periplasm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available