3.8 Proceedings Paper

Broadband orbital angular momentum manipulation using liquid crystal thin-films

Journal

COMPLEX LIGHT AND OPTICAL FORCES VI
Volume 8274, Issue -, Pages -

Publisher

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.913757

Keywords

orbital angular momentum; polarization gratings; liquid crystal; complex beam; broadband

Ask authors/readers for more resources

We introduce two high efficiency thin-film optical elements, operating over a wide spectral range, to generate and control the Orbital Angular Momentum (OAM) of various light sources: a broadband q-plate and a broadband Forked Polarization Grating (FPG). The broadband OAM manipulation is achieved by thin liquid crystal polymer layers that are aligned to provide the required spatially varying anisotropy. These elements operate using geometric phase principles to generate raised and lowered OAM modes whose efficiencies are sensitive to the polarization state of the incident light. We discuss the design principles involved and experimentally demonstrate broadband q-plates and FPGs that are highly efficient (> 90%) in the visible wavelength range. These thin film elements enable easy integration into various optical systems requiring broadband OAM manipulation such as optical trapping and high capacity information.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available