4.5 Article

Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin - an antimicrobial drug

Journal

ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY
Volume 46, Issue -, Pages 964-973

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/21691401.2018.1476371

Keywords

Amoxicillin; polymeric nanocarrier; sustained release; oral drug delivery

Funding

  1. Department of Scientific Research Projects, Istanbul University [44188]

Ask authors/readers for more resources

In this study, amoxicillin (AMO)-loaded poly(vinyl alcohol)/sodium alginate (PVA/NaAlg) nanoparticles were prepared as a polymer-based controlled release system. The physicochemical properties of the obtained nanoparticles were investigated by XRD, DSC/TGA, particle size analyses and zeta potential measurements. The average particle sizes were in the range from 336.3 +/- 25.66 to 558.3 +/- 31.39 nm with negative zeta potential values from -41.86 +/- 0.55 to-47.3 +/- 2.76 mV. The influences of PVA/NaAlg ratio, span 80 concentration, exposure time to glutaraldehyde (GA) and the drug/polymer ratio on AMO release profiles were evaluated. In vitro drug release studies showed a controlled and pH dependent AMO release with an initial burst effect. XRD patterns and DSC thermograms of AMO-loaded nanoparticles revealed that the drug in the nanoparticles was in amorphous form, which was more stable than the crystalline form. The antibacterial activity of the optimal formulation was also investigated. The minimum inhibitory concentration (MIC) values of this formulation had the comparable antibacterial activity with that of pure AMO. These results indicate that the developed nanoparticles could be a promising candidate drug delivery system for AMO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available