4.5 Article

Nanocarrier for levodopa Parkinson therapeutic drug; comprehensive benserazide analysis

Journal

ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY
Volume 46, Issue -, Pages S434-S446

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/21691401.2018.1430583

Keywords

Benserazide; nanocarrier; Parkinson; carboxylated-CN; non-covalent interaction

Funding

  1. Graduate University of Advanced Technology, Kerman, Iran

Ask authors/readers for more resources

Loss of dopamine-secreting neurons in the midbrain causes Parkinson's disease. L-DOPA, the precursor to the neurotransmitters dopamine, crosses vast majority of physiological and biochemical barriers that dopamine cannot. But most levodopa is decarboxylated to dopamine before it reaches the brain. This causes to little therapeutic gain with strong peripheral side effects. Benserazide is an irreversible inhibitor of peripheral aromatic L-amino acid decarboxylase that prevents the breakdown of levodopa in the bloodstream. The challenges are to increase the therapeutic efficiency, the bioavailability and decreasing the unfavourable side effects of Levodopa drug. Biocompatible nano-sized drug carriers could address these challenges at molecular level. Thus calculations of drug loading ability of acid-functionalized CNT for the benserazide as a nanodug carrier complex for L-DOPA were performed. In this regard, evaluation of all adsorption features of the most stable conformer of benserazide molecule onto carboxylated carbon nanotube is critical. To determine the minimum energy conformer of benserazide, the molecular structure and conformational analysis of 512 possible conformers have been subjected to first principle quantum mechanical calculations. Our work established a novel and easy-to-make formulation of benserazide/carboxylated CNT conjugate with extremely high drug loading efficiency of Levodopa for Parkinson disease treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available