4.6 Article

Analysis of Photocatalytic Nitrogen Fixation on Rutile TiO2(110)

Journal

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Volume 6, Issue 4, Pages 4648-4660

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.7b03652

Keywords

Density functional theory; Uncertainty analysis; Nitrogen reduction; Nitrogen oxidation; Nitrogen fixation

Funding

  1. School of Chemical & Biomolecular Engineering at the Georgia Institute of Technology

Ask authors/readers for more resources

Photocatalytic nitrogen fixation provides a promising route to produce reactive nitrogen compounds at benign conditions. Titania has been reported as an active photocatalyst for reduction of dinitrogen to ammonia; however there is little fundamental understanding of how this process occurs. In this work the rutile (110) model surface is hypothesized to be the active site, and a computational model based on the Bayesian error estimation functional (BEEF-vdW) and computational hydrogen electrode is applied in order to analyze the expected dinitrogen coverage at the surface as well as the overpotentials for electrochemical reduction and oxidation. This is the first application of computational techniques to photocatalytic nitrogen fixation, and the results indicate that the thermodynamic limiting potential for nitrogen reduction on rutile (110) is considerably higher than the conduction band edge of rutile TiO2, even at oxygen vacancies and iron substitutions. This work provides strong evidence against the most commonly reported experimental hypotheses, and indicates that rutile (110) is unlikely to be the relevant surface for nitrogen reduction. However, the limiting potential for nitrogen oxidation on rutile (110) is significantly lower, indicating that oxidative pathways may be relevant on rutile (110). These findings suggest that photocatalytic dinitrogen fixation may occur via a complex balance of oxidative and reductive processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available