4.6 Article

Climate Change Impacts on Nutrient Losses of Two Watersheds in the Great Lakes Region

Journal

WATER
Volume 10, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/w10040442

Keywords

climate change; WEPP-WQ model; total phosphorus; nitrate nitrogen

Funding

  1. [41271048]

Ask authors/readers for more resources

Non-point sources (NPS) of agricultural chemical pollution are one major reason for the water quality degradation of the Great Lakes, which impacts millions of residents in the states and provinces that are bordering them. Future climate change will further impact water quality in both direct and indirect ways by influencing the hydrological cycle and processes of nutrient transportation and transformation, but studies are still rare. This study focuses on quantifying the impacts of climate change on nutrient (Nitrogen and Phosphorus) losses from the two small watersheds (Walworth watershed and Green Lake watershed) within the Great Lakes region. Analysis focused on changes through this century (comparing the nutrient loss prediction of three future periods from 2015 to 2099 with 30 years for each period against the historical nutrient estimation data from 1985 to 2008). The effects on total phosphorus and nitrate-nitrogen losses due to changes in precipitation quantity, intensity, and frequency, as well as air temperature, are evaluated for the two small watersheds, under three special report emission scenarios (SRES A2, A1B, B1). The newly developed Water Erosion Prediction Project-Water Quality (WEPP-WQ) model is utilized to simulate nutrient losses with downscaled and bias corrected future climate forcing from two General Circulation Models (GFDL, HadCM3). For each watershed, the observed runoff and nutrient loads are used to calibrate and validate the model before the application of the WEPP-WQ model to examine potential impacts from future climate change. Total phosphorus loss is projected to increase by 28% to 89% for the Green Lake watershed and 25% to 108% for theWalworth watershed mainly due to the combined effects of increase of precipitation quantity, extreme storm events in intensity and frequency, and air temperature. Nitrate-nitrogen losses are projected to increase by 1.1% to 38% for the Green Lake watershed and 8% to 95% for the Walworth watershed with the different major influencing factors in each future periods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available