4.3 Article

Mechanical Properties of Dehydroxylated Kaolinitic Clay in Self-Compacting Concrete for Pavement Construction

Journal

SILICON
Volume 11, Issue 5, Pages 2429-2437

Publisher

SPRINGER
DOI: 10.1007/s12633-017-9654-6

Keywords

Pavement; Self-compacting concrete; Metakaolin; Mechanical strength; Rheology

Ask authors/readers for more resources

The high increase in the cost of cement has led to a reduction in concrete production in most developing and under-developed countries. Therefore, the need for a sustainable and cost-effective substitute for cement is necessary. This research focused on the application of dehydroxylated kaolinitic clay in the production of self-compacting concrete for pavement construction. The elemental and oxide composition of the cementitious material (cement and metakaolin) was assessed using atomic absorption spectrometry and a scanning electron microscope was used to determine the particle geometry. Six mixtures of SCC with 0%, 5%, 10%, 15%, 20% and 25% metakaolin replacement were incorporated into this concrete mix. The passing ability, segregation ability and the flowing ability of the fresh concrete were assessed. The strength properties of the various mixtures (compressive and flexural) of the samples were also assessed at 3, 7, 14, and 28 days. The rheological properties showed that the addition of dehydroxylated kaolinitic clay higher than 10% showed poor rheology. However, percentages greater than 15% gave a reduction in compressive strength and flexural strength. In a bid to encourage sustainability in road construction and adopt the use of eco-friendly material, metakaolin is a viable material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available